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1. ABSTRACT
Hierarchical dynamic simplification (HDS) is a new approach to
the problem of simplifying arbitrary polygonal environments.
HDS operates dynamically, retessellating the scene continuously
as the user’s viewing position shifts, and adaptively, processing
the entire database without first decomposing the environment
into individual objects.  The resulting system allows real-time
display of very complex polygonal CAD models consisting of
thousands of parts and hundreds of thousands of polygons.  HDS
supports various preprocessing algorithms and various run-time
criteria, providing a general framework for dynamic view-
dependent simplification.

Briefly, HDS works by clustering vertices together in a
hierarchical fashion.  The simplification process continuously
queries this hierarchy to generate a scene containing only those
polygons that are important from the current viewpoint.  When
the volume of space associated with a vertex cluster occupies less
than a user-specified amount of the screen, all vertices within
that cluster are collapsed together and degenerate polygons
filtered out.  HDS maintains an active list of visible polygons for
rendering.  Since frame-to-frame movements typically involve
small changes in viewpoint, and therefore modify the active list
by only a few polygons, the method takes advantage of temporal
coherence for greater speed.

CR Categories: I.3.5 [Computer Graphics]: Computational Geometry and
Object Modeling - surfaces and object representations.

Additional Keywords: polygonal simplification, level of detail, view
dependent rendering.

2. INTRODUCTION

2.1 Polygons In Computer Graphics
Polygonal models currently dominate the field of interactive
three-dimensional computer graphics.  This is largely because
their mathematical simplicity allows rapid rendering of polygonal
datasets, which in turn has led to widely available polygon-
rendering hardware.  Moreover, polygons serve as a sort of
lowest common denominator for computer models, since almost
any model representation (spline, implicit-surface, volumetric)
can be converted with arbitrary accuracy to a polygonal mesh.

In many cases the complexity of such models exceeds the
capability of graphics hardware to render them interactively.
Three approaches are used to alleviate this problem:

• Augmenting the raw polygonal data to convey more
visual detail per polygon.  Gouraud shading and texture
mapping fall into this category.

• Using information about the model to cull away large
portions which are occluded from the current
viewpoint.  The visibility processing approach of Teller
and Sequin is an excellent example [Teller 91].

• Polygonal simplification methods simplify the
polygonal geometry of small or distant objects to
reduce the rendering cost without a significant loss in
the visual content of the scene.  HDS is one such
method.

2.2 Polygonal Simplification
Polygonal simplification is at once a very current and a very old
topic in computer graphics.  As early as 1976, James Clark
described the benefits of representing objects within a scene at
several resolutions, and flight simulators have long used hand-
crafted multi-resolution models of airplanes to guarantee a
constant frame rate [Clark 76, Cosman 81].  Recent years have
seen a flurry of research into generating such multi-resolution
representations of objects automatically by simplifying the
polygonal geometry of the object.  This paper presents a  new
approach which simplifies the geometry of entire scenes
dynamically, adjusting the simplification as the user moves
around.

2.3 Motivation
The algorithm presented in this paper was conceived for very
complex hand-crafted CAD databases, a class of models for
which existing simplification methods are often inadequate.
Real-world CAD models are often topologically unsound (i.e.,
non-manifold), and may entail a great deal of clean-up effort
before many simplification algorithms can be applied.
Sometimes such models even come in “polygon-soup” formats
which do not differentiate individual objects, but instead
describe the entire scene as an unorganized list of polygons.  No
existing algorithm deals elegantly with such models.

Even when the model format delineates objects, simplifying
complex CAD datasets with current schemes can involve many
man-hours.  To begin with, physically large objects must be
subdivided.  Consider a model of a ship, for example: the hull of
the ship should be divided into several sections, or the end
furthest from the user will be tessellated as finely as the nearby
hull.  In addition, physically small objects may need to be
combined, especially for drastic simplification.  The diesel
engine of that ship might consist of ten thousand small parts; a
roughly engine-shaped block makes a better approximation than
ten thousand tetrahedra.  Finally, each simplification must be
inspected for visual fidelity to the original object, and an
appropriate switching threshold selected.  This can be the most
time-consuming step in the simplification of a complicated model
with thousands of parts, but few existing techniques address
automating the process.1

These considerations led to a new approach with three
primary goals.  First, the algorithm should be very general,
making as few assumptions as possible about the input model.
The algorithm must therefore deal robustly with degenerate and

                                                            
1 Notable exceptions include work by Cohen et al, and by Shirley and Maciel

[Cohen 96, Maciel 95].
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non-manifold models.  Second, the algorithm should be
completely automatic, able to simplify even a polygon-soup
model without human intervention.  This implies that the
algorithm must simplify the entire scene adaptively rather than
relying on simplifying objects within the scene.  Third, the
algorithm should be dynamically adjustable, supplying the
system with a fine-grained interactive “dial” for trading off
performance and fidelity.  This final requirement implies that the
algorithm must operate at least partially at run time.

2.4 Hierarchical Dynamic Simplification
Hierarchical dynamic simplification has some novel features.
Rather than representing the scene as a collection of objects,
each at several levels of detail, the entire model comprises a
single large data structure.  This is the vertex tree, a hierarchy of
vertices which is queried dynamically to generate a simplified
scene.  The vertex tree contains information only about the
vertices and triangles of the model; manifold topology is not
required and need not be preserved.  Each node in the vertex tree
contains one or more vertices; HDS operates by collapsing all of
the vertices within a node together to a single representative
vertex.  Triangles whose corners have been collapsed together
become redundant and can be eliminated, decreasing the total
polygon count.  Likewise, a node may be expanded by splitting
its representative vertex into the representative vertices of the
node’s children.  Triangles filtered out when the node was
collapsed become visible again when the node is expanded,
increasing the polygon count.

The entire system is dynamic; nodes to be collapsed or
expanded are continuously chosen based on their projected size.
The screenspace extent of each node is monitored: as the
viewpoint shifts, certain nodes in the vertex tree will fall below
the size threshold.  These nodes will be folded into their parent
nodes and the now-redundant triangles removed from the display
list.  Other nodes will increase in apparent size to the user and
will be unfolded into their constituent child nodes, introducing
new vertices and new triangles into the display list.  The user
selects the screenspace size threshold and may adjust it during
the course of a viewing session for interactive control over the
degree of simplification.  Nodes will be folded and unfolded each
frame, so efficient methods for finding, adding, and removing the
affected triangles are crucial.

3. STRUCTURES AND METHODS

3.1 Active Triangle List
The purpose of the active triangle list is to take advantage of
temporal coherence.  Frames in an interactive viewing session
typically exhibit only incremental shifts in viewpoint, so the set
of visible triangles remains largely constant.  The active triangle
list in its simplest form is just a sequence of those visible
triangles.  Expanding a node appends some triangles to the active
triangle list; collapsing the node removes them.  The active list is
maintained in the current implementation as a doubly-linked list
of triangle structures, each with the following basic structure:

struct Tri {
Node * corners[3];
Node * proxies[3];
Tri *prev, *next;

};

The corners field represents the triangle at its highest
resolution, pointing to the three nodes whose representative
vertices are the original corners of the triangle. The proxies field
represents the triangle in the current simplification, pointing to
the first active ancestor of  each corner node [Figure 1].

Before Simplification After Simplification

(b) Arrows point at proxies(a) Arrows point at corners

Figure 1: A triangle’s corners reference the initial vertices; its
proxies point to the current simplification of each corner.
Clustering vertices to the representative vertex of their quadrant
(circled) collapses all but the darkened triangle.

3.2 Vertex Tree
Created during a preprocessing stage, the vertex tree controls the
order in which vertices are collapsed and stores data necessary to
collapse and uncollapse these vertices quickly.  Unfolded nodes
in the vertex tree are labeled active, and folded nodes are labeled
inactive; the active nodes of the vertex tree comprise a
contiguous region called the active tree.  Active nodes with no
active children are a special case; these nodes form the boundary
of the active tree and are labeled boundary nodes[Figure 2].

Boundary Nodes

Active Tree

Vertex Tree

Figure 2: The vertex tree, active tree, and boundary nodes.

Each node in the vertex tree includes the basic structure
described below (explanations of the individual fields follow):

struct Node {
BitVec id;
Byte depth;
NodeStatus label;
Coord repvert;
Coord center;
float radius;
Tri * tris;
Tri * subtris;
Node * parent;
Byte numchildren;
Node ** children;

};

• id: a bit vector which labels the path from the root of
the vertex tree to the node.  In a binary vertex tree,
each bit specifies the left or right branch at that level of
the tree.  For the vertex octree described in section 7.1,
each 3-bit triple denotes the correct branch at that
level.

• depth: the depth of the node in the vertex tree.  The
depth and id together uniquely identify the node.

• label: the node’s status: active, boundary, or inactive.
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• repvert: the coordinates of the node’s representative
vertex.  All vertices in boundary and inactive nodes are
collapsed to this vertex.

• center, radius: the center and radius of a bounding
sphere containing all vertices in this node.

• tris: a list of triangles with exactly one corner in the
node.  These are the triangles whose corners must be
adjusted when the node is folded or unfolded.

• subtris: a list of triangles with two or three corners
within the node, but no more than one corner within
any child of the node [Figure 4].  These triangles will
be filtered out if the node is folded, and re-introduced
if the node is unfolded.

• parent, numchildren, children: the parent and
children of this node in the vertex tree.

The fundamental operations associated with nodes in the
vertex tree are collapseNode() and expandNode().  These
functions add or remove the subtris of the specified node from
the active triangle list and update the proxies of the node’s tris:

collapseNode (Node *N)
N->label = boundary;
foreach child C of N

// label all children inactive
if (C->label == active)

collapseNode(C);
C->label = inactive;

foreach triangle T in N->tris
// update tri proxies
foreach corner c of {1,2,3}

T->proxies[c] = 
firstActiveAncestor(T-> 

corners[c]);
foreach triangle T in N->subtris

// remove subtris from active list
removeTri(T);

expandNode (Node *N)
foreach child C of N

C->label = boundary;
N->label = active;
foreach triangle T in N->tris

// update tri proxies
foreach corner c of {1,2,3}

T->proxies[c] = 
firstActiveAncestor(T->

corners[c]);
foreach triangle T in N->subtris

// add subtris to active list
addTri(T);

4. VIEW-DEPENDENT SIMPLIFICATION
The data structures and methods described so far provide a
framework for dynamic view-dependent simplification.  Any
criterion for run-time simplification may be plugged into this
framework; each criterion takes the form of a function to choose
which nodes are folded and unfolded each frame.  The current
implementation incorporates three criteria: a screenspace error
threshold, a silhouette test, and a triangle budget.

4.1 Screenspace Error Threshold
The underlying philosophy of HDS is to remove triangles which
are not important to the scene.  Since importance usually
diminishes with size on the screen, an obvious run-time strategy
is to collapse nodes which occupy a small amount of the screen.
To formulate this strategy more precisely, consider a node which
represents several vertices clustered together.  The error
introduced by collapsing the vertices can be thought of as the
maximum distance a vertex can be shifted during the collapse
operation, which equals the length of the vector between the two
farthest vertices in the cluster.  The extent of this vector on the
screen is the screenspace error of the node.  By unfolding exactly
those nodes whose screenspace error exceeds a user-specified
threshold t, HDS enforces a quality constraint on the
simplification: no vertex shall move by more than t pixels on the
screen.

Determining the exact screenspace extent of a vertex cluster
can be a time-consuming task, but a conservative estimate can be
efficiently obtained by associating a bounding volume with each
node in the vertex tree.  The current implementation uses
bounding spheres, which allow an extremely fast screenspace
extent test but often provide a poor fit to the vertex cluster.  The
function nodeSize(N) tests the bounding sphere of the node N
and returns its extent projected onto the screen.  The recursive
procedure adjustTree() uses nodeSize() in a top-down fashion,
evaluating which nodes to collapse and expand:

adjustTree(Node *N)
size = nodeSize(N);
if (size >= threshold)

if (N->label == active)
foreach child C of N

adjustTree(C);
else // N->label == Boundary

expandNode(N);
else // size < threshold

if (N->label == active)
collapseNode(N);

4.2 Silhouette Preservation
Silhouettes and contours are particularly important visual cues
for object recognition.  Detecting nodes along object silhouettes
and allocating more detail to those regions can therefore
disproportionately increase the perceived quality of a
simplification [Xia 96].  A conservative but efficient silhouette
test can be plugged into the HDS framework by adding two fields
to the Node structure: coneNormal is a vector and coneAngle is
a floating-point scalar.  These fields together specify a cone of
normals [Shirman 93] for the node which conservatively bounds
all the normals of all the triangles in the subtree rooted at the
node [Figure 5].  At run time a viewing cone is created that
originates from the viewer position and tightly encloses the
bounding sphere of the node [Figure 6].  Testing the viewing
cone against the cone of normals determines whether the node is
completely frontfacing, completely backfacing, or potentially lies
on the silhouette.  If any normal in the cone of normals is
orthogonal to any direction contained within the viewing cone,
the node is potentially on the silhouette [Figure 7]:

coneNormal
(Nview)

coneAngle (α)

Figure 5: On the left, a node containing four triangles plus its
bounding sphere.  On the right, the node’s cone of normals.

Figure 4: Showing the subtris of three nodes.  These are the
triangles which appear and vanish as the nodes fold and unfold.
Here the subtris of each circled node are darkened.
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viewConeNormal (Nview)

viewConeAngle (β)

θ

Figure 6: The viewing cone on the left originates from the viewer
and tightly encloses the bounding sphere of the node.  The angle
between Ncone and Nview is denoted θ  in the pseudocode below.

testSilhouette(Node *node, Coord eyePt)
α = node->coneAngle;
Ncone = node->coneNormal;
β = calcViewConeAngle(eyePt, node);
Nview = calcViewConeNormal(eyePt, node);
θ = cos-1(Nview • Ncone);
if (θ - α - β > π/2)

return FrontFacing;
if (θ + α + β < π/2)

return BackFacing;
return OnSilhouette;

Silhouette preservation dovetails nicely with the screenspace
error metric approach presented above: the testSilhouette()
operation determines which nodes may be on the silhouette, and
these nodes are then tested against a tighter screenspace error
threshold than interior nodes [Plate 2].  The adjustTree()
operation is easily modified to incorporate this test:

adjustTree(Node *N)
size = nodeSize(N);
if (testSilhouette(N) == OnSilhouette)

testThreshold = Ts;
else   // testSilhouette(N) == Interior

testThreshold = TI;
if (size >= testThreshold)

if (N->label == active)
foreach child C of N

adjustTree(C);
else  // N->label == Boundary

expandNode(N);
else   // size < testThreshold

if (N->label == active)
collapseNode(N);

Note that hierarchical backface culling falls out of the
silhouette preservation test if polygons of backfacing nodes are
not rendered [Kumar 96].

4.3 Triangle-Budget Simplification
The screenspace error threshold and silhouette test allow the user
to set a bound on the quality of the simplified scene, but often a
bound on the complexity (and rendering time) is desired instead.
Triangle budget simplification allows the user to specify how
many triangles the scene should contain.  HDS then minimizes
the maximum screenspace error of all boundary nodes within this
triangle budget constraint.  The intuitive meaning of this process
is easily put into words: “Vertices on the screen can move as far
as t pixels from their original position.  Minimize t.”

The current system implements triangle budget simplification
as a priority queue of boundary nodes, sorted by screenspace
error.  The node N with the greatest error is unfolded, removing
N from the top of the queue and inserting the children of N back
into the queue.  This process iterates until unfolding the top node
of  the queue would exceed the triangle budget, at which point
the maximum error has been minimized.  The simplification
could further refine the scene by searching the priority queue for
the largest nodes which can still be unfolded without violating
the triangle budget, but this is unnecessary in practice.  The
initial minimization step works extremely well on all models
tested, and always terminates within twenty triangles of the
specified budget.  Pseudocode for this procedure is
straightforward:

budgetSimplify(Node *rootnode)
// Initialize Q to rootnode
Heap *Q(rootnode);
Node *topnode = rootnode;

Q->initialize(root);
while (topnode->nsubtris < tribudget)

topnode = Q->removeTop();
expandNode(topnode);
Q->insert(topnode->children);
tribudget -= topnode->nsubtris;

5. OPTIMIZING THE ALGORITHM
A straightforward implementation of the HDS algorithm runs
with adequate speed on small models, no larger than 20,000
triangles or so.  Three kinds of optimizations together increase
the speed of the dynamic simplification by almost two orders of
magnitude: exploiting temporal coherence, using visibility
information, and parallelizing the algorithm.

5.1 Exploiting Temporal Coherence
HDS assumes a high degree of  frame-to-frame coherence in the
position of the viewer.  The design of the active triangle list in
particular is based on the assumption that relatively few triangles
will be added or removed to the scene each frame.  One
especially frequent operation that can also take advantage of
coherence is the firstActiveAncestor() function, used heavily by
collapseNode() and expandNode().  FirstActiveAncestor(N)
searches up the vertex tree for the nearest ancestor of node N
which is tagged Active or Boundary.  Storing the result of each
search as a field of N and going up or down from that node
speeds up the next search considerably.  The id field of the Node
structure provides the information necessary to traverse down the
tree along the correct path.

5.2 Visibility: Culling the Active Triangle List
The active triangle list as described exploits temporal coherence
but does not lend itself to efficient culling of invisible triangles.
View-frustum culling techniques clump polygons together, often
using a spatial hierarchy to quickly reject clumps which lie
outside the view frustum, but clumping is hard to maintain in the
ever-changing active list.  A different approach for HDS would
be to distribute the active triangles across the vertex tree,
associating each triangle with the smallest node which contains
all three of the triangle’s corners.  Rendering the scene would
then consist of a top-down traversal of the vertex tree, evaluating
each node’s visibility and rendering the associated triangles of
visible nodes.  While enabling efficient visibility culling, this
scheme loses the advantage of temporal coherence, since every
visible active node must be visited every frame.  On complex
models the overhead of traversing a deep active tree undermines
the benefit of rendering fewer triangles.

In practice a hybrid approach works well: the active triangle
list is split into several lists, each associated with a high-level
node of the vertex tree.  Nodes with an active list are termed
cullNodes; triangles added by expandNode() are appended to the
active list of the smallest cullNode containing the corners of the
triangle.  Restricting cullNodes to the high levels of the vertex
tree results in a coarse-grained culling without the overhead of a
full active tree traversal, thus exploiting both visibility culling
and temporal coherence.

5.3 Visibility: Avoiding Irrelevant Nodes
Distributing the active list across multiple nodes speeds up
rendering, since invisible nodes are not visited.  HDS may still
need to examine such nodes, however, since the tris and subtris
of an invisible node may still be visible [Figure 8].  Some nodes
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are not only invisible but irrelevant, that is, expanding or
collapsing the node cannot possibly affect the scene.  An
invisible node is irrelevant if it does not contain a corner of any
potentially visible triangle; the simplification traversal can save
time by not visiting these nodes.  In an interactive walkthrough
session, the vast majority of invisible nodes are usually
irrelevant, so testing for irrelevance provides a significant
speedup.  An exact test is difficult, but a conservative test for
irrelevant nodes is easily constructed by adding a container field
to each node in the vertex tree.  The container node C of a node
N is the smallest node which contains every tri and subtri of N
and N’s descendants.  C thus contains every triangle which might
be affected by operations on the subtree rooted at N.  If C is
invisible, N is irrelevant and can be safely ignored by the
simplification traversal.

Irrelevant Invisible

Figure 8: Invisible nodes are completely outside the view
frustum.  Irrelevant nodes are invisible and contain no vertices
of visible triangles.

5.4 Asynchronous Simplification
An important strategy for speeding up any algorithm is to
parallelize it, distributing the work over multiple processors.
Computer graphics applications most commonly accomplish this
by parallelizing the major stages of the rendering computation in
a pipeline fashion.  A traditional level-of-detail system might be
divided into SELECT and RENDER stages: the SELECT stage
decides which resolution of which objects to render and compiles
them into a display list, which the RENDER process then
renders.  Meanwhile, the SELECT process prepares the display
list for the next frame [Funkhouser 93, Rohlf 94].  If S is the
time taken to select levels of detail and R is the time taken to
render a frame, parallelizing the two processes as a pipeline
reduces the total time per frame from R+S to max(R,S).

HDS also divides naturally into two basic tasks, SIMPLIFY
and RENDER.  The SIMPLIFY task traverses the vertex tree
folding and unfolding nodes as needed.  The RENDER task
cycles over the active triangle list rendering each triangle.  Let
the time taken by SIMPLIFY to traverse the entire tree be S and
the time taken by RENDER to draw the entire active list be R.
The frame time of a uniprocessor implementation will then be
R+S, and the frame time of a pipelined implementation will
again be max(R,S).  The rendering task usually dominates the
simplification task, so the effective frame time often reduces to
R.  The exception is during large shifts of viewpoint, when the
usual assumption of temporal coherence fails and many triangles
must be added and deleted from the active triangle list.  This can
have the distracting effect of slowing down the frame rate when
the user speeds up the rate of motion.

Asynchronous simplification provides a solution: let the
SIMPLIFY and RENDER tasks run asynchronously, with the
SIMPLIFY process writing to the active triangle list and the
RENDER process reading it.  This decouples the tasks for a total
frame time of R, eliminating the slowdown artifact associated

with large viewpoint changes.  When the viewer’s velocity
outpaces the simplification rate in asynchronous mode, the
SIMPLIFY process simply falls behind.  As a result the scene
rendered for the viewer is somewhat coarse in quality until the
SIMPLIFY process catches up, at which point the scene
gradually sweetens back to the expected quality.  This graceful
degradation of fidelity is less distracting than sudden drops in
frame rate.

A straightforward implementation of asynchronous
simplification is relatively easy to code on a shared-memory
multiprocessor system, but care must be taken to avoid
“dropouts”.  Characterized by triangles that disappear for a
frame, these transient artifacts occur when the RENDER process
sweeps through a region of the active list being affected by the
SIMPLIFY process.  For example, the collapseNode() operation
removes triangles and fills in the resulting holes by adjusting the
corner positions of neighboring triangles.  If those neighboring
triangles have already been rendered during the frame when
collapseNode() adjusts their corners, but the triangle to be
removed has not yet been rendered, a hole will appear in the
mesh for that frame.

Dropouts are fundamentally caused by failure to maintain a
consistent shared database in an asynchronous system.  They are
difficult to eradicate with simple locking schemes.  Locking the
triangles to be affected before every collapseNode() and
expandNode() operation will not suffice, since the triangles may
not be near each other in the active triangle list.  Since the active
triangle list is divided among the high-level nodes for culling
purposes, another possibility would be to lock all nodes affected
by the collapse or expand operation.2 This strategy prevents
dropouts, but proves prohibitively expensive in practice.

The update queue provides one solution to the dropout
problem.  The update queue was motivated by the observation
that the time spent performing collapseNode() and expandNode()
operations is a small fraction of the time taken by the SIMPLIFY
process to traverse the vertex tree and determine which nodes to
fold and unfold.  Rather than actually performing the updates, the
SIMPLIFY process accumulates them into the update queue,
marking the node Dirty and placing a Collapse or Expand entry
in the queue.  The update queue acts as a buffer: at the beginning
of every frame the RENDER process performs the first n updates
in the queue, collapsing or expanding each node before marking
it Clean again.3 All changes to the active triangle list take place
as a batch before any triangles are rendered; the shared database
is thus kept consistent and dropouts are eliminated.

6. PREVIOUS WORK

6.1 Constructing the Vertex Tree
Many excellent polygonal simplification algorithms have been
described in the recent literature [Cohen 96, Hoppe 96, Eck 95].
HDS is not a competing algorithm, but a framework into which
many existing algorithms can be incorporated.  Any algorithm
which can be expressed in terms of vertex collapse operations
can be used to create the vertex tree.  The construction of the
vertex tree determines the order in which vertices are collapsed,
which in turn determines the quality of the simplification HDS
can create.  In addition, the construction of the vertex tree affects
the run-time performance of HDS, since a well-balanced tree will
                                                            
2 This turns out to be the subtree rooted at the container node of the node

being collapsed or expanded.

3 As with any buffer, care must be taken to empty the update queue fast
enough; n was set to 1000 for all models tested.
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reduce the traversal time of the SIMPLIFY task.  Possible
algorithms form a spectrum, ranging from fast, simple
approaches with moderate fidelity to slower, more sophisticated
methods with superb fidelity.  The choice of algorithm for
constructing the vertex tree is heavily application-dependent.  In
a design-review setting, CAD users may want to visualize their
revisions in the context of the entire model several times a day.
Preprocessing times of hours are unacceptable in this scenario.
On the other hand, a walkthrough of the completed model might
be desired for demonstration purposes.  Here it makes sense to
use a slower, more careful algorithm to optimize the quality of
simplifications and prevent any distracting artifacts.

6.1.1 Simplest: Spatial Subdivision
One of the simplest techniques is to classify the vertices of the
model with a space-partitioning structure such as an octree.  An
adaptive version of the spatial binning approach introduced by
[Rossignac 92], the spatial subdivision method was first
introduced for view-dependent simplification by [Luebke 96].
Vertices are ranked by importance using local criteria such as
edge length and curvature.  Beginning at the root of the octree,
the most important vertex within each node is chosen as that
node’s representative vertex.  The vertices are then partitioned
among the node’s eight children and the process is recursively
repeated.  In this way vertices are clustered roughly according to
proximity.  Neighboring vertices are likely to get collapsed
almost immediately, whereas distant vertices tend to merge only
at high levels of the tree.

Unless the vertices of the model are uniformly distributed,
the straightforward approach just described will result in highly
unbalanced octrees.  CAD models are often locally dense but
globally sparse, consisting of highly detailed components
separated by areas of low detail or empty space.  In this situation
a more adaptive partitioning structure such as a K-D tree will
produce a more balanced tree, yielding better run-time
performance.  An even simpler structure is the tight octree, in
which each node of the octree is tightened to the smallest axis-
aligned cube which encloses the relevant vertices before the node
is subdivided.  This approach seems to adapt very well to CAD
models, and most results presented in this paper used tight-octree
spatial subdivision to cluster vertices.

Top-down spatial subdivision clustering schemes possess
many advantages.  Their simplicity makes an efficient, robust
implementation relatively easy to code.  In addition, spatial
partitioning of vertices is typically very fast, bringing the
preprocess time of even large models down to manageable levels:
preprocessing the 700,000 polygon torpedo room model, for
example, takes only 158 seconds [Table 1].  Finally, spatial-
subdivision vertex clustering is by its nature very general.  No
knowledge of the polygon mesh is used; manifold topology is
neither assumed nor preserved.  Meshes with degeneracies (such
as cracks, T-junctions, and missing polygons) are unfortunately
quite common.  Spatial-subdivision vertex clustering schemes
will operate despite the presence of degeneracies incompatible
with more complex schemes.

6.1.2 Prettiest: Simplification Envelopes,
Progressive Mesh Algorithm
On the other end of the spectrum, some very sophisticated recent
simplification algorithms could be used to build the vertex
cluster tree.  Cohen et al present Simplification Envelopes, offset
surfaces of a polygonal mesh modified to prevent self-
intersection and bounded to a distance ε of the mesh.  By
generating a simpler triangulation of the surface without
intersecting the simplification envelopes, the authors guarantee a

simplification which preserves global topology and varies from
the original surface by no more than ε [Cohen 96].
Simplification envelopes could be used to construct the vertex
tree in HDS by applying successively larger values of ε, at each
stage only clustering those vertices which do not cause the mesh
to intersect the envelopes.  The value of ε used to generate each
cluster would then become the error metric associated with that
node in the vertex tree, resulting in an HDS simplification with
excellent fidelity.  Unfortunately, it is not clear how to extend
simplification envelopes to allow merging between different
objects, or to allow drastic topology-discarding collapse
operations at high levels of the tree.

Hoppe describes an optimization approach which creates a
series of edge collapses for the Progressive Meshes
representation [Hoppe 96].  Each edge collapse corresponds to a
node in HDS with two children and one or two subtris.  The
stream of edge collapse records in a progressive mesh contains
an implicit hierarchy that maps directly to the HDS vertex tree.
A progressive mesh may thus be viewed without modification in
an HDS system, though this has disadvantages.  A progressive
mesh never collapses more than two vertices together at a time,
which may result in an unnecessarily deep vertex tree.  A
modified optimization step which could collapse multiple
vertices seems possible, and would address this problem.  Also,
progressive meshes collapse only vertices within a mesh, so
separate objects never merge together.  Finally, restricting edge
collapses to those which preserve the manifold topology of the
mesh limits the amount of simplification possible.4 For these
reasons, a direct embedding of a progressive mesh is not optimal
for the drastic simplification necessary to visualize very complex
models.

Along with progressive meshes, Hoppe introduces a very nice
framework for handling surface attributes of a mesh during
simplification.  Such attributes are categorized as discrete
attributes, associated with faces in the mesh, and scalar
attributes, associated with corners of the faces in the mesh.
Common discrete attributes include material and texture
identifiers; common scalar attributes include color, normal, and
texture coordinates.  Hoppe’s method of maintaining discrete and
scalar attributes as vertices are collapsed extends directly to
HDS, and is used without modification in the current
implementation.

6.1.3 A Hybrid Approach
Both the simplification envelope and progressive mesh
approaches can be combined with top-down spatial subdivision
to allow drastic simplification and merging of objects.  The result
of either approach on  a collection of objects in a scene is a
collection of vertex trees.  When the vertex tree for each object is
adequate, the spatial subdivision algorithm unifies this “vertex
forest” into a single tree.  A tight octree or similar structure
merges nearby vertices from the same or different object, without
regard to topology.  The final vertex tree exhibits both high
fidelity (at low levels of the tree) and drastic simplification (at
high levels).

The sphere and bunny simplifications in the color plates were
generated with this type of hybrid approach.  Since this model
was intended to illustrate silhouette preservation as a run-time
criterion, it was important to merge vertices so as to minimize
the normal cones of the resulting vertex cluster.  Also, the
curvature of a non-manifold mesh is not well defined, so only
adjacent vertices in the mesh could be collapsed.  These
                                                            
4 For example, our implementation could not reduce the 69,451-triangle

bunny model beyond 520 triangles.
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considerations led to a two-stage clustering algorithm.  First, a
progressive mesh representation of the model was created, in
which the edge collapse order was chosen to minimize normal
cones and to maintain a balanced tree.  Edge collapses which
resulted in normal cone angles greater than 135o were
disallowed.  When the model could be simplified no further with
these restrictions, a tight octree was applied to the remaining
vertex clusters to produce a single HDS vertex tree.

6.2 Other Related Work
Xia and Varshney use merge trees to perform view-dependent
simplifications of triangular models in real-time [Xia 96].  A
merge tree is similar to a progressive mesh, created off-line and
consisting of a hierarchy of edge collapses.  Selective refinement
is applied based on viewing direction, lighting, and visibility.
Xia and Varshney update an active list of vertices and triangles,
using frame-to-frame coherence to achieve real-time
performance.  In addition, extra information is stored at each
node of the merge tree to specify dependencies between edge
collapse operations.  These dependencies are used to eliminate
folding artifacts during the visualization of the model, but also
constrain the tessellation to change gradually between areas of
high simplification and areas of low simplification.  This
restriction limits the degree of drastic simplification possible
with a merge tree, as does the inability of merge trees to combine
vertices from different objects.  Xia and Varshney also assume
manifold models, which together with the limited simplification
available makes their approach less appropriate for large-scale
CAD databases.

The error bounds described in Section 4 provide a useful
indicator of the simplification fidelity, but screenspace error and
silhouette preservation are only two of the many criteria that
determine the view-dependent perceptual importance of a region
of a scene.  Ohshima et al.  [Ohshima 96] investigate a gaze-
directed system which allocates geometric detail to objects
according to their calculated visual acuity.  Objects in the center
of vision have a higher visual acuity than objects in the periphery
and are thus drawn at a higher level of detail.  Similarly,
stationary objects are assigned a higher visual acuity than rapidly
moving objects, and objects at the depth of the user’s binocular
fusion are assigned a higher visual acuity than objects closer or
farther than the distance at which the user’s eyes currently
converge.  These techniques show promise for further reducing
the polygon count of a scene in immersive rendering situations,
and could be integrated into the HDS framework as additional
run-time simplification criteria.

7. RESULTS
HDS has been implemented and tested on a Silicon Graphics
Onyx system with InfiniteReality graphics.

The models tested span a range of categories.  Bone6 is a
medical model created from the Visible Man volumetric dataset.
Sierra is a terrain database originally acquired from satellite
topography.  Torp and AMR are complex CAD models of the
torpedo and auxiliary machine rooms on a nuclear submarine,
each comprised of over three thousand individual objects.  Bunny
is a digitized model from a laser scanner.  Finally, Sphere is a
simple procedurally-generated sphere created to illustrate
silhouette preservation and backface simplification.  Table 1
details the size of each database along with the preprocessing
time for the tight-octree algorithm of Section 6.1.1 and the hybrid
algorithm of Section 6.1.3.  Polygon counts and error thresholds
for specific views of each model are provided with the color
plates.

8. REMARKS
Polygonal simplification is a process of approximation.  As with
any approximation, a simplification algorithm taken to the limit
should recover the original object being approximated.  This
holds true for the HDS algorithm: as the screenspace area
threshold approaches subpixel size, the visual effects of
collapsing vertices become vanishingly small.  Note that the
polygon counts of large and complex enough scenes will be
reduced even under these extreme conditions.  This is important;
with complex CAD models, finely tessellated laser-scanned
objects, and polygon proliferating radiosity algorithms all coming
into widespread use, databases in which many or most visible
polygons are smaller than a pixel are becoming increasingly
common.

View-dependent simplification is inherently an immediate-
mode technique, a disadvantage since most current rendering
hardware favors retained-mode display lists.  Experiments on an
SGI Onyx with InfiniteReality graphics, for example, indicate
that Gouraud-shaded depth-buffered unlit triangles render two to
three times faster in a display list than in a tightly optimized
immediate mode display loop [Aliaga 97].  Relatively small
models will prove more efficient to render using existing static
multiresolution techniques, since the levels of detail for each
object can be precompiled into a display list.  As scenes approach
the size and complexity of the AMR and Torp datasets, the
speedups possible in an adaptive view-dependent framework
begin to exceed the speedups provided by display lists.  For very
large, complex CAD databases, as well as for scenes containing
degenerate or polygon-soup models, HDS retains the advantage
even on highly display-list oriented hardware.

9. SUMMARY AND FUTURE WORK
HDS provides a framework for the dynamic view-dependent
simplification of complex polygonal environments.  This
framework is robust, operating solely at the level of vertices and
triangles and thus insensitive to topological degeneracies, and
adaptive, able to merge objects within a scene or even operate on
polygon-soup databases.  Any simplification method reducible to
a series of vertex clustering operations can be used by the
preprocessing stage of HDS.  The tight-octree spatial subdivision
method described in section 7.1 and the two-stage hybrid
approach described in section 7.3 have been implemented and
demonstrate two such preprocessing strategies.  Different run-
time criteria for collapsing and expanding vertices may also be
plugged into the HDS framework; the current system supports a
screenspace error tolerance, a triangle budget, and silhouette
preservation.  Many optimizations of the HDS run-time
algorithm have been incorporated, including an asynchronous
simplification scheme which decouples the rendering and
simplification tasks.

Model Category Vertices Triangles
Preprocessing Time

(Tight Octree)   (Hybrid)
 Bone6  Medical  3,410,391  1,136,785  445 seconds            —
 Sphere  Procedural  4,098  8,192  1.2 seconds     2.5 minutes
 Bunny  Scanned  35,947  69,451  12 seconds      20 minutes
 Sierra  Terrain  81,920  162,690  33 seconds              —
 AMR  CAD  280,544  504,969  121 seconds            —
 Torp  CAD  411,778  698,872  158 seconds    87 minutes

Table 1: Sizes and preprocessing times of models pictured in
color plates.  Note that the hybrid vertex clustering algorithm
(described in Section 6.1.3) is not optimized for speed.
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Many avenues for future work remain.  HDS in its current
form is limited to static scenes; even the fast spatial subdivision
schemes for vertex tree construction cannot keep up with a model
that changes significantly in real time.  An incremental algorithm
for creating and maintaining the vertex tree might allow
simplification of truly dynamic scenes.  More sophisticated run-
time criteria are certainly possible.  The bounding spheres in the
current implementation can be a poor fit for the vertices of a
cluster, resulting in unnecessarily conservative error estimates.
More sophisticated bounding volumes such as ellipsoids or
oriented bounding boxes would complicate the nodeSize()
operation, but could provide a much better fit.  Nodes might also
be unfolded to devote more detail to regions containing specular
highlights in the manner of [Cho 96] and [Xia 96], or to
perceptually important regions using the gaze-directed heuristics
described in [Oshima 96].
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